- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Abia, Carlos (2)
-
Prantzos, Nikos (2)
-
Athanassoula, E (1)
-
Chen, Tianxiang (1)
-
Chieffi, Alessandro (1)
-
Cristallo, Sergio (1)
-
Cunha, Katia (1)
-
Ekström, Sylvia (1)
-
Guerço, Rafael (1)
-
Hayes, Cristian R (1)
-
Limongi, Marco (1)
-
Majewski, Steven R (1)
-
Meynet, Georges (1)
-
Plez, Bertrand (1)
-
Ramirez, Solange V (1)
-
Recio-Blanco, Alejandra (1)
-
Roberti, Lorenzo (1)
-
Sellgren, Kris (1)
-
Smith, Verne V (1)
-
Vescovi, Diego (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Using a semi-analytical model of the evolution of the Milky Way, we show how secular evolution can create distinct overdensities in the phase space of various properties (e.g. age versus metallicity or abundance ratios versus age) corresponding to the thin and thick discs. In particular, we show how key properties of the Solar vicinity can be obtained by secular evolution, with no need for external or special events, like galaxy mergers or paucity in star formation. This concerns the long established double-branch behaviour of [alpha/Fe] versus metallicity and the recently found non-monotonic evolution of the stellar abundance gradient, evaluated at the birth radii of stars. We extend the discussion to other abundance ratios and we suggest a classification scheme, based on the nature of the corresponding yields (primary versus secondary or odd elements) and on the lifetimes of their sources (short-lived versus long-lived ones). The latter property is critical in determining the single- or double- branch behaviour of an elementary abundance ratio in the Solar neighbourhood. We underline the high diagnostic potential of this finding, which can help to separate clearly elements with sources evolving on different time-scales and help determining the site of e.g. the r-process(es). We define the ‘abundance distance’ between the thin and thick disc sequences as an important element for such a separation. We also show how the inside-out evolution of the Milky Way disc leads rather to a single-branch behaviour in other disc regions.more » « less
-
Guerço, Rafael; Smith, Verne V; Cunha, Katia; Ekström, Sylvia; Abia, Carlos; Plez, Bertrand; Meynet, Georges; Ramirez, Solange V; Prantzos, Nikos; Sellgren, Kris; et al (, Monthly Notices of the Royal Astronomical Society)ABSTRACT The centre of the Milky Way contains stellar populations spanning a range in age and metallicity, with a recent star formation burst producing young and massive stars. Chemical abundances in the most luminous stellar member of the nuclear star cluster (NSC), IRS 7, are presented for 19F, 12C, 13C, 14N, 16O, 17O, and Fe from a local thermodynamic equilibrium analysis based on spherical modelling and radiative transfer with a 25-M⊙ model atmosphere, whose chemistry was tailored to the derived photospheric abundances. We find IRS 7 to be depleted heavily in both 12C (∼–0.8 dex) and 16O (∼–0.4 dex), while exhibiting an extremely enhanced 14N abundance (∼+1.1 dex), which are isotopic signatures of the deep mixing of CNO-cycled material to the stellar surface. The 19F abundance is also heavily depleted by ∼1 dex relative to the baseline fluorine of the NSC, providing evidence that fluorine along with carbon constrain the nature of the deep mixing in this very luminous supergiant. The abundances of the minor isotopes 13C and 17O are also derived, with ratios of 12C/13C ∼ 5.3 and 16O/17O ∼ 525. The derived abundances for IRS 7, in conjunction with previous abundance results for massive stars in the NSC, are compared with rotating and non-rotating models of massive stars and it is found that the IRS 7 abundances overall follow the behaviour predicted by stellar models. The depleted fluorine abundance in IRS 7 illustrates, for the first time, the potential of using the 19F abundance as a mixing probe in luminous red giants.more » « less
An official website of the United States government
